Search results for "entropy estimation"
showing 4 items of 4 documents
An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram
2016
We present the first application of the emerging framework of information dynamics to the characterization of the electroencephalography (EEG) activity. The framework provides entropy-based measures of information storage (self entropy, SE) and information transfer (joint transfer entropy (TE) and partial TE), which are applied here to detect complex dynamics of individual EEG sensors and causal interactions between different sensors. The measures are implemented according to a model-free and fully multivariate formulation of the framework, allowing the detection of nonlinear dynamics and direct links. Moreover, to deal with the issue of volume conduction, a compensation for instantaneous e…
Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress
2017
Objective: A defining feature of physiological systems under the neuroautonomic regulation is their dynamical complexity. The most common approach to assess physiological complexity from short-term recordings, i.e. to compute the rate of entropy generation of an individual system by means of measures of conditional entropy (CE), does not consider that complexity may change when the investigated system is part of a network of physiological interactions. This study aims at extending the concept of short-term complexity towards the perspective of network physiology, defining multivariate CE measures whereby multiple physiological processes are accounted for in the computation of entropy rates.…
Information-theoretic assessment of cardiovascular-brain networks during sleep
2015
This study was aimed at detecting the structure of the physiological network underlying the regulation of the cardiovascular and brain systems during normal sleep. To this end, we measured from the polysomnographic recordings of 10 healthy subjects the normalized spectral power of heart rate variability in the high frequency band (HF) and the EEG power in the δ, θ, α, σ, and β bands. Then, the causal statistical dependencies within and between these six time series were assessed in terms of internal information (conditional self entropy, CSE) and information transfer (transfer entropy, TE) computed via a linear method exploiting multiple regression models and a nonlinear method combining ne…
Linear and non-linear brain-heart and brain-brain interactions during sleep.
2015
In this study, the physiological networks underlying the joint modulation of the parasympathetic component of heart rate variability (HRV) and of the different electroencephalographic (EEG) rhythms during sleep were assessed using two popular measures of directed interaction in multivariate time series, namely Granger causality (GC) and transfer entropy (TE). Time series representative of cardiac and brain activities were obtained in 10 young healthy subjects as the normalized high frequency (HF) component of HRV and EEG power in the δ, θ, α, Ï, and β bands, measured during the whole duration of sleep. The magnitude and statistical significance of GC and TE were evaluated between each …